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The present study is concerned with radiation-induced natural convection in a
water-filled triangular enclosure with a sloping bottom, which is directly relevant
to buoyancy-driven flows in littoral regions. An improved scaling analysis is carried
out to reveal more detailed features of the flow than a previously reported analysis.
Two critical functions of the Rayleigh number with respect to the horizontal position
are derived from the scaling for identifying the distinctness and stability of the
thermal boundary layer. Four flow scenarios are possible, depending on the bottom
slope and the maximum water depth. For each flow scenario, the flow domain may be
composed of multiple subregions with distinct thermal and flow features, depending
on the Rayleigh number. The dividing points between neighbouring subregions are
determined by comparisons of the critical functions of the Rayleigh number with the
global Rayleigh number. Position-dependent scales have been established to quantify
the flow properties in different subregions. The different flow regimes for the case
with relatively large bottom slopes and shallow waters are examined in detail. The
present scaling results are verified by numerical simulations.

1. Introduction
Investigations of geophysical natural convection began with shallow rectangular

cavities with thermal forcing applied on vertical endwalls, for which a large body of
literature exists (e.g. Hart 1972; Cormack, Leal & Imberger 1974a, b; Imberger 1974;
Bejan & Rossie 1981; Bejan, Al-Homoud & Imberger 1981). Physical scaling analysis
(Patterson & Imberger 1980; Patterson 1984) has provided important insight into
the transient development of the buoyancy-driven flow under this configuration.
Subsequently, spatial variations of the radiation absorption property have been
considered in order to provide a closer representation of the real situation (e.g.
Trevisan & Bejan 1986; Coates & Patterson 1993, 1994). In these cases, a cavity-
wide flow is formed to adjust the horizontal temperature gradient in response to the
unequal absorption of radiation.

However, the rectangular model described above is not adequate for representing
the near-shore geometry. The bathymetry variation across the shore in the littoral
region implies that a triangular geometry is a better representation. In fact, it is
this geometry that captures an important mechanism for the generation of fluid
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motion. Since the approximately equal heat flux entering or leaving through the water
surface is distributed over different depths of water, the water at any given location
becomes either hotter or cooler than its horizontal neighbouring region, and thus a
horizontal temperature gradient is established. As a consequence, the temperature-
induced horizontal density gradient then promotes exchange between littoral and
open waters.

Field observations (Adams & Wells 1984; Monismith, Imberger & Morison 1990)
have demonstrated the significance of this buoyancy-induced horizontal exchange flow
due to bathymetry variation of the near-shore water, which is sometimes referred to
as a ‘thermal siphon’. The functioning of the thermal siphon substantially reduces
the time required to replace the water in the sidearm. A recent field experiment by
Monismith et al. (2006) indicates that the thermal siphon may be a generic feature of
the hydrodynamics of coral reefs and coastal oceans in general.

While the thermal forcing in field situations varies over the diurnal cycle, this
paper, as well as Farrow & Patterson (1993b, 1994) and Lei & Patterson (2002, 2003)
addresses the simplest forcing case: that of a suddenly applied constant radiative
heating. An understanding of this case will provide insight into the more complex
case of unsteady, including diurnal, forcing. During the daytime, the water body
absorbs solar radiation in an exponentially decaying manner with depth according
to Beers’ law. Typically, in natural water bodies, most radiation is absorbed within
a depth of about 1–2 m from the water surface, resulting in a shallow surface layer
with water much warmer than the underlying water. The depth of this surface layer
is termed the penetration depth of solar radiation, which depends on the spectral
distribution of the radiation and the turbidity of the water. For the near-shore region
with water depth less than the penetration depth, two theoretical models have been
proposed to explain the occurrence of an increasing temperature towards the shore
which drives a surface outflow from the edge of the sidearm. One model assumes
that all of the radiation is absorbed and uniformly distributed over the local water
depth (Farrow & Patterson 1993a; Farrow 2004; Monismith et al. 2006), resulting
in the water temperature being inversely proportional to the water depth. The other
model (Farrow & Patterson 1994; Lei & Patterson 2002) is more physically realistic:
it takes into account the exponentially decaying absorption of solar radiation, and
assumes that any residual radiation arriving at the bottom slope is absorbed by
the bottom, and re-emitted as a bottom heat flux, which is a potential source for
Rayleigh–Bénard instability. Therefore, the bottom heat flux increases shorewards,
resulting in a temperature gradient that drives the flow up the slope in the bottom
boundary layer and outwards in the surface layer.

Based on a small-slope assumption, the zero-order asymptotic solution of Farrow &
Patterson (1994) quantifies the circulation induced by absorption of radiation in a
sidearm. The solution has shed light on the temporal and spatial variations of the
thermal flow. However, the nature of the zero-order asymptotic solution of Farrow &
Patterson (1994) implies that the effects of convection or horizontal conduction, which
are both second-order effects, were excluded. These effects were included in the recent
asymptotic solution of Farrow (2004) for periodically forced natural convection over
a slowly varying topography. As mentioned above, the theoretical model of Farrow
(2004) assumes that the radiation energy and heat loss is uniformly distributed over
the local water depth.

In the stability analysis of Farrow & Patterson (1993b), which was based on
the above-mentioned zero-order asymptotic solution and assumed that longitudinal
vortices were the form of instability, the local critical Grashof number for the onset
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of instability at different horizontal positions was obtained both analytically and
numerically. Although some divergence exists between the two solutions at large
horizontal positions, both the analytical and numerical solutions reveal that, under
sufficiently high Grashof numbers, instability caused by the bottom heat flux would
occur only in a region centred away from the shore.

Efforts to understand natural convection in the sidearm have also been made
through scaling analysis. Lei & Patterson (2002) focused on shallow waters with
water depth less than the penetration depth of radiation. The scaling classified
the overall flow state at different Rayleigh numbers into three distinct flow regimes:
conductive; transitional; and convective. However, the scaling analysis did not capture
the distinctive flow regions and the variation of thermal flow properties with offshore
distance, which have been reported in the numerical simulation of Mao, Lei &
Patterson (2007).

Identifying the different flow regions through scaling will provide an important
insight into the detailed exchange and mixing processes, as the transportation
processes vary significantly in different regions of the sidearm. For instance, owing to
the occurrence of rising thermal plumes in the unstable region, vertical transport there
is much stronger than in the stable region. Moreover, quantifying the variation of
flow velocity with offshore distance would be desirable for assessing the contribution
of radiation-induced natural convection to horizontal exchanges at various offshore
distances.

A survey of the literature indicates that no existing physical scaling has captured
the above-mentioned spatial variation of the thermal flow in a triangular domain
subject to radiative heating. This has motivated the present investigation which will
reveal detailed scenarios of the thermal flow at different parametric settings and the
variation of the flow features with offshore distance. In the following sections, an
extended scaling analysis is developed and later verified by numerical simulations.
The major advancement of the present scaling compared with the scaling by Lei &
Patterson (2002) is that horizontal dependency is retained throughout the scaling
process. As a consequence, detailed features of the flow at different offshore distances
are revealed, and a more complete scenario of the flow at different parametric settings
is illustrated.

With the potential geophysical applications in mind, the region near the tip of the
triangular enclosure is termed the near-shore region and the region far from the tip
is termed the offshore region. In the field situation under conditions of high radiation
input, the flow may become turbulent. The present scaling analysis is limited to
laminar conditions with a constant molecular viscosity, approaching the transition to
turbulence when instabilities occur. Turbulence models are outside the scope of this
paper.

2. Model formulation
In near-shore regions of geophysical water bodies, topography variations alongshore

are often less significant than across shore, and thus a two-dimensional wedge is an
appropriate geometric model to characterize the depth variation in these regions. The
model under consideration is sketched in figure 1, which has a bottom slope of A

and a depth of h with the water surface represented by the horizontal side. Although
a much more complex bathymetry may exist in field situations, the present model
aims to capture the basic flow mechanisms induced by the depth variation across the
shore, and thus the simple wedge model is sufficient. Further, a two-dimensional flow
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Figure 1. Geometry of the flow domain.

is assumed in this investigation despite the potential for the flow to become three-
dimensional when instabilities occur. The adoption of a two-dimensional numerical
model for this type of flow has been justified in Lei & Patterson (2005). With the
Boussinesq assumption, the two-dimensional Navier–Stokes and energy equations
governing the flow and temperature evolution within the wedge are:
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where u and v are the velocity components in the horizontal and vertical direction,
respectively; x and y are the horizontal and vertical coordinates originating from
the tip; T is the fluid temperature; and P is the pressure. The density, kinematic
viscosity, thermal diffusivity and thermal expansion coefficient of the fluid at the
reference temperature T0 are ρ0, ν, k and β , respectively. S(x, y, t) in (4) represents
the internal heating source due to absorption of solar radiation, which is given by
(refer to Farrow & Patterson 1994; Lei & Patterson 2002):

S =
I0

ρ0Cp

ηeηy = H0ηeηy(y � 0), (5)

where I0 represents the radiation intensity at the water surface, CP is the specific heat
of water at the reference temperature, and η is the attenuation coefficient (Rabl &
Nielsen 1975). Here, for simplification, η is considered constant throughout the whole
water body.

In the present model, the initial condition of the flow is stationary and isothermal.
Rigid non-slip velocity boundary conditions (u = v = 0) are assumed for the endwall
and the bottom slope, whereas the water surface is stress free (∂u/∂y = 0 and v = 0).
An adiabatic temperature condition is assumed at the water surface and the endwall.
On the bottom slope, the heat flux resulting from the re-emission of the residual
radiation arriving at the bottom is

∂T

∂n̂
= −1

k
H0e

−Aηx, (6)
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where n̂ is the direction normal to the sloping bottom. It is clear from the above
equation that the bottom heat flux varies with the horizontal location.

It is worth noting that the following scaling analysis is conducted for an unbounded
wedge domain, and thus the endwall has no relevance to the scaling. However, the
endwall is assumed for the numerical simulations so that calculations can be carried
out in a finite domain. The effect of an endwall on the simulation results of thermal
flow induced by the diurnal thermal cycle is discussed in detail in Farrow (2004). For
the present model, the presence of the endwall in the simulation, forces the flow to
change its course at the deep end, resulting in a region near the endwall which is
affected by the return flow. Therefore, for the later verification of the scaling using
simulation results, flow properties from the simulation were selected from positions
sufficiently far from the endwall to avoid the endwall effect.

3. Scaling analysis
3.1. Initial stage of boundary-layer development

The water body in the shallow region is heated through two independent mechanisms:
first, the direct absorption of radiation by the water body, represented by the source
term S(x, y, t) in the energy equation, which decays with the water depth, resulting
in a stable stratification; and secondly, the heat flux emitted by the bottom surface
(equation (6)). Both the source term and the bottom heat flux are time independent.
The stable stratification induced by the former mechanism implies that no flow is
generated through this mechanism. On the other hand, a thermal boundary layer
adjacent to the sloping bottom is generated by the latter mechanism, and within this
boundary layer, a horizontal temperature gradient generates a thermal flow up the
bottom slope. Furthermore, the adverse vertical temperature gradient near the bottom
is a potential source for thermal instability.

Within the thermal boundary layer, the water temperature increases owing to both
the heat flux from the bottom surface and the direct absorption of radiation. A
balance between the unsteady term and the source term in the energy equation yields
a temperature growth scale due to the absorption of radiation:

Ta ∼ H0η eηyt. (7)

A balance between the unsteady term and the diffusion term yields a scale for the
thickness of the thermal boundary layer

δT ∼ (kt)1/2. (8)

According to (6), the temperature increase within the thermal boundary layer due to
the bottom heat flux can be expressed as

Tb ∼ 1

k
H0δT e−Aηx ∼ k−1/2t1/2H0e

−Aηx. (9)

The above scale shows that the temperature in the thermal boundary layer increases
with time, but decreases exponentially with the horizontal position x.

The exponential terms in both (7) and (9) were approximated to be O(1) in
Lei & Patterson (2002) under a shallow-water assumption of h < η−1. However, these
exponential terms are retained in the present study in order to reveal the position-
dependent flow features.

To evaluate the relative importance of the source term and the bottom heat flux in
raising the water temperature in the bottom boundary layer, the temperature scale (7)
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is compared with the scale (9), which yields that, when t < (kη2)−1, the bottom heat
flux dominates the temperature growth in the thermal boundary layer. It will be
shown later that (kη2)−1 is a very large time scale compared to other time scales
of the flow development. Hence, in the following scaling, the bottom heat flux is
considered to be the dominant thermal forcing.

As soon as the radiation is initiated, the thermal boundary layer starts to grow.
The horizontal temperature gradient within the thermal boundary layer induces a
buoyancy term in the momentum equation that drives a flow up the bottom slope.
In most field situations, the slope of near-shore waters is very small, indicating that
the thermal boundary layer above the sloping bottom is approximately horizontal,
and thus the thickness of the thermal boundary layer represents its vertical length
scale, and the vertical component of the flow velocity is negligible compared to the
horizontal component. In the vertical momentum equation, a balance between the
buoyancy term and the pressure term yields a scale for the pressure difference within
the thermal boundary layer:

P ∼ gβρ0TbδT ∼ gβρ0H0e
−Aηxt. (10)

This pressure difference acts along the thermal boundary layer and drives a flow
up the slope with a velocity governed by the horizontal momentum transfer. In
the horizontal momentum equation, a comparison among the unsteady inertia term
O(u/t), the advection term O(u2/x) and the viscous term O(νu/δ2

T ) shows that the
viscous term dominates among the three terms for Pr > 1 and ut/x <Pr , where Pr is
the Prandtl number defined as

Pr = ν/k. (11)

Therefore, for a fluid with Pr > 1 (such as water considered here), at the early
stage when ut < Prx, the balance of the horizontal momentum transfer is between
the pressure gradient and the viscous term, which yields a velocity scale

u ∼ gβH0e
−Aηx kt2

νx
∼ Ra

t2k3

h4x
e−Aηx, (12)

where Ra is the Rayleigh number defined as

Ra =
gβH0h

4

νk2
. (13)

It is worth noting that in the scaling of Lei & Patterson (2002), the horizontal
length scale was taken as the full length of the thermal boundary layer L =h/A.
However, a fixed length scale in the scaling obscures the horizontal dependency of
the flow, which will be revealed below by adopting a variable horizontal length scale
x.

3.2. Steady state of the boundary layer

In the thermal boundary layer, the heat conducted into the boundary layer from
the bottom slope is convected away by the flow. From (12), it is clear that the flow
velocity increases with time. Initially, as the flow velocity is small, the heat conducted
into the boundary layer is greater than that convected away, and the layer keeps
growing. As time increases, the flow velocity increases, and thus convection increases
until the heat conducted into the boundary layer is balanced by that convected away.
At this time, the thermal boundary layer stops growing and the flow becomes steady.
If at this time the bottom thermal boundary layer has not grown to the full local
water depth, then the thermal boundary layer is considered locally distinct.



Unsteady natural convection in a triangular enclosure 81

The balance between conduction and convection in the energy equation can be
expressed as:

uTb

x
∼ kTb

δ2
T

. (14)

Again, the horizontal distance x measured from the tip is taken as the horizontal
length scale here. The balance in (14) yields the time scale for the steady state of the
thermal boundary layer:

tc ∼ x2/3eAηx/3Ra−1/3 h4/3

k
. (15)

It is clear in (15) that the steady-state time increases with x. This is in agreement with
the finding of Farrow & Patterson (1993b), although no quantitative description of the
steady-state time was given in their investigation. The steady-state time scale tc is now
compared with (kη2)−1, which is the time scale for the switch of the dominant heating
mode from bottom heat flux to direct absorption of radiation, as described earlier.
The comparison yields that, if Ra > η6h4eAηxx2, which applies to most field situations
in the near-shore regions, the bottom heating dominates over the direct absorption
heating. If the thermal boundary layer is distinct at time tc, it will remain so at
the steady state. Substituting the steady-state time scale tc into (8), (9) and (12), the
steady-state scales for the thickness of the thermal boundary layer, the temperature
and the velocity can be derived, respectively, as:

Tb ∼ x1/3e−5Aηx/6Ra−1/6 H0

k
h2/3, (16)

δT ∼ x1/3eAηx/6Ra−1/6h2/3, (17)

u ∼ x1/3e−Aηx/3Ra1/3kh−4/3, (18)

and the volumetric flow rate across a sectional plane at steady state is given by:

Q ∼ uδT ∼ x2/3e−Aηx/6kh−2/3Ra1/6. (19)

It is clear from (18) that the steady-state velocity increases with x in the near-shore
region where x < (Aη)−1, and decreases with x in the offshore region where x > (Aη)−1.
Similarly the steady-state temperature in the thermal boundary layer increases in the
region where x < 0.4(Aη)−1. Furthermore, the thickness of the thermal boundary layer
increases monotonically with the horizontal position x.

Apart from revealing the dependency of thermal flow properties on the horizontal
position x, the above scaling will enable the identification of regions with distinct flow
features, such as local distinctness and local stability of the thermal boundary layer.

The condition for the presence of a distinct thermal boundary layer can be derived
in two equivalent ways: δT <Ax, i.e. the thickness of the thermal boundary at the
steady state is less than the local water depth, or tc < td , where td is the time for the
thermal boundary layer to reach the water surface

td ∼ A2x2
/
k. (20)

Both inequalities reach the same condition

Ra > A−6(h/x)4eAηx. (21)

Since A−6(h/x)4eAηx is a function of the horizontal position x, it is denoted by f1(x)
as

f1(x) ∼ A−6(h/x)4eAηx. (22)
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It is worth noting that the steady-state scales of (16)–(19) are derived under the
assumption of tc < td , hence these scales apply to distinct thermal boundary layers
for which Ra >f1(x). For the near-shore region with an indistinct thermal boundary
layer, i.e. Ra < f1(x), the thermal boundary layer will grow to the top surface at
the time td before convection becomes significant enough to balance conduction.
Substituting (20) into (8), (9) and (12), the steady-state scales for the thickness of the
thermal boundary layer, the temperature and the velocity for the near-shore region
with an indistinct thermal boundary layer are obtained as:

δT ∼ Ax, (23)

Tb ∼ AxH0e
−Aηx/k, (24)

u ∼ k(A/h)4x3e−AηxRa. (25)

The volumetric flow rate at steady state for an indistinct boundary layer in the
near-shore region is given by:

Q ∼ uδT ∼ kA5(x/h)4e−AηxRa. (26)

3.3. Thermal boundary-layer instability

As noted earlier, the presence of an adverse temperature gradient in the bottom
thermal boundary layer causes the thermal boundary layer to be potentially unstable.
A Rayleigh–Bénard-type instability sets in if the adverse temperature gradient exceeds
a critical value, or if RaL >Rac, where RaL is the local Rayleigh number of the thermal
boundary layer, defined as

RaL ∼ gβTbδ
3
T

νk
∼ Ra

(
t

h2/k

)2

e−Aηx, (27)

and Rac is the critical Rayleigh number of an inclined thermal layer which can be
approximated by (Kurzweg 1970):

Rac = Rac(0
o)/ cos θ, (28)

where θ is the inclined angle of the thermal layer, and Rac(0
o) is the critical

Rayleigh number for horizontal fluid layers. Rac(0
o) = 1101 for a rigid free-boundary

configuration with constant temperatures on the bounding surfaces and a linear
temperature profile across the depth of the fluid layer (Drazin & Reid 1981). This
value is used in (28) for later calculations following Lei & Patterson (2002). It will
become clear that the exact value of Rac does not affect any subsequent discussions
and conclusions (also refer to Lei & Patterson 2002).

It is clear from (27) that the local Rayleigh number increases with time. Instability
sets in at a time tB given by:

tB ∼
(

Rac

Ra

)1/2
h2

k
eAηx/2. (29)

The above scale indicates that the time for the onset of instability increases with the
horizontal position x. Although scale (27) suggests that RaL increases with time, there
is an upper limit for the growth of RaL with time. When the flow reaches its steady
state at tc, both Tb and δT reach their maximum values, and thus the maximum RaL

is given by RaL(tc). If RaL(tc) < Rac, then the flow is always stable. In other words,
instability, if present, has to occur before the steady-state time tc. Therefore, the
condition for the thermal flow to become unstable can be derived in two equivalent
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f1 (x) ~ A–6 (h/x)4 eAηx
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Figure 2. Typical profiles of f1(x) and f2(x) for (a) A > Ra−1/2
c , h< 4/η; (b)

A > Ra−1/2
c , h> 4/η; (c) A <Ra−1/2

c , h< 4/η; and (d) A <Ra−1/2
c , h> 4/η; Horizontal dotted

lines represent typical flow regimes. Rayleigh-number values of the filled squares separate the
different Rayleigh-number regimes.

ways: (i) Ra(tc) >Rac or (ii) tc > tB . Both approaches give the same condition of

Ra >Ra3
c

(
h

x

)4

eAηx. (30)

Since Ra3
c(h/x)4eAηx is a function of the horizontal position x, it is denoted by f2(x)

as

f2(x) ∼ Ra3
c

(
h

x

)4

eAηx. (31)

4. Discussion of possible flow regimes
Two critical functions of the Rayleigh number, f1(x) and f2(x), have been

derived for characterizing the thermal boundary-layer flow. Both functions represent
thresholds for the presence of different flow regimes. If Ra >f1(x), the thermal
boundary layer is distinct; and if Ra > f2(x), Rayleigh–Bénard instability sets in at
time tB .

The comparison between f1(x) and f2(x) yields that if A>Ra−1/2
c , f1(x) < f2(x) for

all x; and if A<Ra−1/2
c , f1(x) > f2(x) for all x. Calculations of the derivative of f1(x)

and f2(x) show that both f1(x) and f2(x) decrease with x for x < 4/(Aη), and increase
with x for x > 4/(Aη). Because the range of x under consideration is 0 <x <h/A,
there are four possible scenarios, as shown in figure 2:
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I II III

Figure 3. Sketches of expected isotherms for different flow subregions: (I) Ra < f1(x),
indistinct, conductive; (II) f1(x) <Ra <f2(x), distinct, stable convective; (III) Ra > f2(x),
unstable convective.

(a) A>Ra−1/2
c , h < 4/η: shallow waters with relatively large bottom slopes

(figure 2a);
(b) A>Ra−1/2

c , h > 4/η: deep waters with relatively large bottom slopes (figure 2b);
(c) A<Ra−1/2

c , h < 4/η: shallow waters with relatively small bottom slopes
(figure 2c);

(d) A<Ra−1/2
c , h > 4/η: deep waters with relatively small bottom slopes (figure 2d).

Each of the horizontal lines in figure 2 represents a typical value of the Rayleigh
number which results in different flow regimes in the respective scenarios. The
following discussion of various flow regimes will focus mainly on scenario (a). Possible
flow regimes are discussed briefly for the other three scenarios. Detailed discussion
of the other scenarios can be made following the same procedures as outlined for
scenario (a) below.

(a) A> Ra−1/2
c , h < 4/η

In this case, f1(x) < f2(x). Since h < 4/η and x <h/A, then x < 4/(Aη). Both f1(x)
and f2(x) decrease monotonically with x over the entire range of x and reach their
respective minimum values at x = h/A, where

f1(h/A) ∼ A−2eηh, (32)

f2(h/A) ∼ Ra3
cA

4eηh. (33)

The analysis of Lei & Patterson (2002) is conducted under the assumption of
h < 1/η and hence is covered in this scenario. Under the specified condition, a full
flow domain may consist of three subregions with distinct features illustrated by the
sketched isotherms in figure 3. Region I is a conductive region; Region II is a stable
convective region; and Region III is an unstable convective region. More detailed
features of each of these subregions are described below, and will be demonstrated by
the numerical simulations. For a given Rayleigh number, the actual flow domain may
consist of one or two or all three subregions, depending on the comparisons between
the Rayleigh number and the two critical Rayleigh numbers given in (32) and (33),
as illustrated in figure 2(a) and described below.

(i)Ra < A−2eηh (line 1 in figure 2a). In this regime, Ra is smaller than bothf1(x) and
f2(x) over the entire domain. Therefore, according to the above-described criteria, the
thermal boundary layer is indistinct and stable. In this case, the thermal boundary
layer grows steadily and eventually encompasses the entire domain before convection
becomes significant. Therefore, the heat transfer is dominated by conduction over the
entire domain in this flow regime, corresponding to Region I in figure 3.

(ii)A−2eηh < Ra <Ra3
cA

4eηh (line 2 in figure 2a). In this regime, Ra <f2(x) for all
x, and thus the thermal boundary layer is stable over the entire domain. However,
the thermal flow changes its property at a position x0 where x0 is determined from
f1(x0) ∼ Ra. For x <x0, Ra <f1(x), the thermal boundary layer is indistinct at
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the steady state with conduction dominating the heat transfer, corresponding to
Region I in figure 3; for x >x0, Ra >f1(x), the thermal boundary is distinct, and
convection becomes significant in heat transfer, corresponding to Region II in figure 3.
Therefore, the horizontal position x0 marks the dividing position where the thermal
boundary layer changes from indistinct to distinct and the dominant mode of heat
transfer switches from conduction to convection. This theoretical prediction is easy
to understand intuitively: since the water is shallow near the tip region, it takes
less time for the thermal boundary layer to grow to the full local water depth.
Therefore, the thermal boundary layer reaches the top surface before convection
becomes significant. On the other hand, in the deeper region, it takes a longer time
for the thermal boundary layer to grow to the full local water depth. Before that
happens, convection becomes comparable with conduction, and thus the thermal
boundary layer stops growing and remains distinct at the steady state.

(iii)Ra >Ra3
cA

4eηh (line 3 in figure 2a). In this regime, a constant Ra line intersects
both f1(x) andf2(x). The two crossing points, denoted by x1 and x2, respectively,
in figure 2(a) (f1(x1) ∼ Ra, f2(x2) ∼ Ra), divide the entire flow domain into three
subregions, corresponding to the three subregions sketched in figure 3. For x <x1,
Ra is smaller than both f1(x)and f2(x), the thermal boundary layer is indistinct and
stable, and heat transfer in this subregion is dominated by conduction. For x1 <x <x2,
f1(x) < Ra <f2(x), the thermal boundary layer is distinct and stable, and heat transfer
in this subregion is dominated by stable convection. For x >x2, Ra > f2(x), initially
the thermal boundary layer grows by thermal diffusion; at time tB scaled in (29), the
instability sets in, and the thermal boundary layer becomes unstable before it reaches
a steady state. Subsequently, both primary and secondary convections participate in
this region, and the subregion is classified as an unstable convection region.

(b) A> Ra−1/2
c and h > 4/η

In this case, f1(x) < f2(x) and the water is relatively deep. Both f1(x) and f2(x) reach
their minimum values at x = 4/(Aη), and increase with x for x > 4/(Aη) (figure 2b).
There are five possible flow regimes depending on Ra, as indicated by the five
horizontal dashed lines in figure 2(b). It is worth noting that, in the flow regime of
f2(4/(Aη)) < Ra <f2(h/A), i.e. (e/4)4Ra3

cA
4η4h4 <Ra < Ra3

cA
4eηh, as represented by

the horizontal line 4, the thermal boundary layer is locally unstable only within a
region of x1 < x < x2, where x1 and x2 are determined from f2(x) ∼ Ra, with stable
regions on both the near shore and offshore sides of this region. The prediction of an
unstable region centred away from the shore is consistent with the finding of Farrow
& Patterson (1993b) based on a quasi-static linear stability analysis.

(c) A<Ra−1/2
c and h < 4/η

In this case, f1(x) > f2(x) for all x and both f1(x) and f2(x) decrease with x over
the entire region (figure 2c). The critical Rayleigh number for instability to occur is
smaller than the critical Rayleigh number for the presence of a distinct boundary
layer. For Ra >f2(h/A) ∼ Ra3

cA
4eηh, instability occurs in the region x >x1 (refer to

figure 2c) at time tB before the thermal boundary layer becomes steady. Once the
instability sets in, the growth of the thermal boundary layer is disturbed, and thus
will no longer follow the scale (8). Therefore, the first critical function of the Rayleigh
number f1(x) for the presence of a distinct thermal boundary layer, which is obtained
based on the comparison of the steady-state boundary-layer thickness with the local
water depth, is no longer relevant. As a consequence, there are only two possible flow
regimes in this case, represented by the two horizontal dashed lines in figure 2(c).
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(d) A< Ra−1/2
c and h > 4/η

In this case, f1(x) > f2(x) for all x, and both f1(x) and f2(x) reach their
minimum values at x = 4/(Aη) and increase with x for x > 4/(Aη) (figure 2d).
Similar to the previous scenario, f1(x) is no longer relevant since instability
disturbs the growth of the thermal boundary layer. Instability occurs if Ra >

f2(4/(Aη)), i.e. Ra > (e/4)4 Ra3
cA

4η4h4. If f2(4/(Aη)) <Ra <f2(h/A), i.e. (e/4)4 Ra3
c

A4η4h4 <Ra <Ra3
cA

4eηh, which is represented by line 2 in figure 2(d), instability
occurs in the region of x1 < x < x2, where x1 and x2 are determined from f2(x) ∼ Ra.
If Ra > f2(h/A), i.e. Ra >Ra3

cA
4eηh, instability occurs in the region of x > x0, where

x0 is also determined from f2(x) ∼ Ra.
In summary, the present analysis reveals a more complete and detailed flow

panorama with four possible scenarios, depending on the bottom slope and the
maximum water depth. For each scenario, the entire flow domain may be composed
of several subregions with distinct flow and thermal features, depending on the
Rayleigh number. In the following sections, numerical simulations are conducted to
examine the possible flow regimes and distinct thermal flow features for scenario (a).

5. Numerical procedures
5.1. Governing equations

With radiation continuously entering from the surface and absorbed by the water
body and the assumption of no energy loss through any boundary, the temperature
of the water body keeps increasing. In this sense, there is no steady state with respect
to the water temperature. However, a quasi-steady state will be reached in which
the temperature gradient and flow velocity become steady. At the quasi-steady state,
temperature increases at the same rate everywhere, and thus the difference between the
local temperature and the average temperature becomes steady. The non-dimensional
form of the new set of governing equations containing this temperature difference can
be derived from (1)–(4) following the procedures outlined in Lei & Patterson (2002):

∂u

∂x
+

∂v

∂y
= 0, (34)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −Pr Ra

∂p

∂x
+ Pr∇2u, (35)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= −Pr Ra

∂p

∂x
+ Pr∇2v + Pr RaT , (36)

∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
= ∇2T + (ηeηy − 2). (37)

Here, all the quantities have been normalized with the following scales: the length
scale x, y , 1/η ∼ h; the time scale; t ∼ h2

/
k; the temperature scale T ∼ H0h/k; the

velocity scale: u, v ∼ k/h; and the pressure gradient scale: px, py ∼ ρ0gH0h/k.

5.2. Numerical method

The governing equations (34)–(37) along with the specified boundary and initial
conditions are solved numerically using a finite-volume method. The SIMPLE scheme
is adopted for pressure–velocity coupling; and the QUICK scheme is applied for
spatial derivatives. A second-order implicit scheme is applied for time discretization
in calculating the transient flow.
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f1 (x) ~ A–6 (h/x)4 eAηx

f2 (x) ~ Ra3
c (h/x)4 eAηx
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Figure 4. A typical profile of f1(x) and f2(x) for scenario (a) plotted with parameter values
used in numerical simulations, horizontal lines represent Ra values used in the numerical
simulations.

The simulation is conducted in a triangular domain of a dimensionless depth of
h = 1 and a bottom slope of A= 0.1, with a non-dimensional attenuation coefficient
η =0.12 and a Prandtl number Pr = 7. This parametric setting is relevant to Scenario
(a) discussed in § 4, which is re-plotted with the above non-dimensional values in
figure 4. The horizontal lines in figure 4 represent the actual values of Ra used in the
numerical simulations. It is clear that the selected Ra values cover all three possible
flow regimes for this scenario. In order to avoid a singularity at the tip, the tip is
cut off at x = 0.2, and an extra non-slip and adiabatic vertical wall is assumed there.
Similar treatment of the tip region was carried out in Lei & Patterson (2002), and no
significant modification to the flow was observed.

A mesh and time-step dependency test has been conducted for the case
of Ra = 1.4 × 107 (in the regime Ra >Ra3

cA
4eηh) using four different meshes,

211 × 71, 315 × 105, 421 × 141, 631 × 211. The flow domain is meshed with a non-
uniform grid which has an increasing density towards all of the boundaries. The
time steps for different meshes are adjusted accordingly so that the CFL (Courant–
Friedrichs–Lewy) number remains the same for all meshes. The time histories of the
maximum negative velocity within the bottom boundary layer at x = 3.33 are plotted
in figure 5 for the coarsest and finest, meshes, respectively. Here, the same set of data
is plotted using both linear (figure 5a) and logarithmic (figure 5b) time scales in order
to show clearly the features at different stages of the flow development.

It is clear in figure 5 that three stages of the flow development can be identified in
both solutions. At the initial stage, the solutions with the two meshes are virtually
identical. At the transitional stage when instability starts to set in, the two solutions
deviate from each other since instability is very sensitive to perturbations resulting
from numerical errors, which depend strongly on the grid resolution. However, the
patterns of strong fluctuations are present in both solutions at this stage. At the
quasi-steady stage, the fluctuation of the maximum velocity becomes regular for both
solutions with similar frequency and amplitude. The maximum negative velocities
averaged from t = 0.10 to 0.25 for the four different meshes are (from coarsest to the
finest): −230.8, −228.6, −227.6 and −227.1, indicating that as the mesh resolution
increases, the predicted maximum velocity converges to a constant. The difference
of the averaged maximum velocity between the meshes 421 × 141 and 631 × 211 is
approximately 0.22 %. Furthermore, since the Rayleigh number tested here belongs
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Figure 5. Time histories of the maximum negative horizontal component of velocity in the
bottom boundary layer obtained along the vertical line at x =3.33 for Ra = 1.4 × 107 with two
different meshes; (a) with a linear time scale (b) with a logarithmic time scale.

to the unstable flow regime and is the highest among all the calculated cases, the
effect of the grid resolution on the solution is expected to be even less significant
for other cases with lower Ra. In order to ensure the accuracy of the solutions
while keeping the calculation time manageable, the grid 421 × 141 is used in all the
following simulations. For the chosen mesh, the minimum face area is 0.0024; the
maximum is 0.5125; and the maximum stretch factor is 1.07. The time step adopted
for this mesh is 2.0 × 10−5, giving a maximum CFL number of 1.02 for the present
Rayleigh number.

6. Numerical verification of the scaling analysis
Since the above scaling analysis has unveiled detailed features of the flow in the

triangular enclosure that are not revealed in Lei & Patterson (2002), in particular the
variation of the flow features with x and the existence of distinct sub flow regions at
sufficiently high Ra, the focus of this section will be on the validation of these newly
revealed flow features.

To characterize the thermal features at different horizontal positions, the horizontal
heat transfer rates by conduction and convection, averaged over the local water depth,
are calculated at different horizontal positions. The total horizontal heat transfer rate
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Figure 6. Features of the thermal flow at a low Ra (Ra <A−2eηh) at the steady state. (a)
Isotherms with an interval of 2.11, (b) streamlines with an interval of 0.0525 of clockwise flow
and (c) profile of the horizontal heat transfer rate averaged over the local water depth for
Ra = 70.

with the combined effect of convection and conduction is defined in dimensionless
form as:

H (x) =
1

Ax

∫ 0

−Ax

(
uT1 − ∂T1

∂x

)
dy, (38)

where H (x) is normalized by I0.

6.1. Flow scenarios and distinctive regions in different regimes

6.1.1. Ra <A−2eηh

With the current parametric setting, A−2eηh ≈ 112.75, a simulation at Ra = 70 is
conducted to demonstrate the flow and thermal features in this regime as represented
by line 1 in figure 2(a). Figure 6 shows the isotherms, streamlines and horizontal heat
transfer rates calculated at steady state. The nearly vertical isotherms in figure 6(a)
suggest almost no temperature variation in the vertical direction, which is in agreement
with the scaling expectation of an indistinct thermal boundary layer. Conduction
associated with the horizontal temperature gradient dominates the heat transfer for
the entire domain, as confirmed in figure 6(c). A clockwise flow is induced by the
buoyancy force, as shown by the streamlines in figure 6(b).

6.1.2. A−2eηh <Ra <Ra3
cA

4eηh

In this medium-Rayleigh-number regime, two subdomains are predicted from the
scaling analysis (refer to line 2 in figure 2a): a near-shore region with indistinct
thermal boundary layer and an offshore region with distinct thermal boundary layer.
It is expected that the flow remains stable over the entire domain. The isotherms
and the horizontal heat transfer rates from numerical simulations are plotted in
figure 7 for two typical Ra values (Ra = 3500 and 35 000) within this regime. It is
clear that the characteristics of the isotherms vary with the horizontal position x:
the nearly vertical isotherms in the near-shore region gradually transfer into curved
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Figure 7. Features of thermal flow in the medium Ra regime (A−2eηh < Ra <Ra3
cA

4eηh) at
the steady state. (a) Isotherms with an interval of 1.6887 for Ra = 3500, (b) isotherms with
an interval of 0.8444 for Ra = 35 000, and profiles of the horizontal heat transfer rate at (c)
Ra= 3500 and (d) Ra = 35 000.

isotherms with increasing curvature as x increases, suggesting that convection plays
an increasingly important role in heat transfer in the offshore direction. The vertical
isotherms confirm the feature of an indistinct thermal boundary layer, whereas the
curved isotherms indicate the presence of a distinct thermal boundary layer. Compared
with figure 7(a) for Ra = 3500, the curved isotherms in figure 7(b) for Ra =35 000
expand toward the shore as Ra increases, which is in qualitative agreement with the
scaling prediction shown in figure 2(a).

To further ascertain the dividing positions quantitatively from the numerical data,
the horizontal heat transfer rates averaged over the local depth are presented in
figures 7(c) and 7(d) with respect to the horizontal position x. The position where
convection transfer is equal to conduction transfer is considered as the dividing
position between the two distinct subregions. Comparison between figures 7(c) and
7(d) suggests that the dividing position shifts toward the shore as Ra increases.

The dividing positions obtained from the numerical simulations as described above
are plotted against that from the scaling analysis (by solving x0 numerically from
f1(x0) ∼ Ra) in figure 8 for a range of Rayleigh numbers. It is noted that the results
obtained for the high-Rayleigh-number regime Ra >Ra3

cA
4eηh (see § 6.1.3) are also

included in figure 8. The numerical data are grouped into two categories in figure 8,
one termed ‘Unstable’, representing the data for Ra >Ra3

cA
4eηh; and the other termed

‘Stable’, representing the data for A−2eηh <Ra < Ra3
cA

4eηh as discussed in this section.
The boundary between these two sets of data is approximately indicated by the
vertical dashed line in figure 8. It is seen in this figure that, as the Rayleigh number
increases, the dividing position moves toward the shore, suggesting the shrinkage of
the conduction-dominated regions. The clear linear correlation between the numerical
data and scaling prediction shown in figure 8 suggests that the dividing position
between the conduction-dominated region and the convection-dominated region is
predicted well by the scaling analysis.
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Figure 8. Dividing position between conduction-dominated and convection-dominated
regions from the numerical simulation versus that from scaling analysis. The dashed line
represents the predicted minimum value of the dividing position under a stable condition from
scaling analysis.

6.1.3. Ra >Ra3
cA

4eηh

In this high-Rayleigh-number regime, three distinct subregions are predicted by
scaling analysis (refer to line 3 in figure 2a): a near-shore conductive region (x < x1);
a middle stable convective region (x1 <x <x2); and an unstable convective offshore
region (x > x2). The thermal flow features in these three distinct regions are revealed
in figure 9 with simulation results for two different Ra values (Ra =1.4 × 106 and
1.4 × 107).

The increasing temperature gradient towards the shore leads to an increasing density
of isotherms toward the shore as shown in figures 9(a) and 9(b), where subregions with
distinct features can be identified. The subregion with an indistinct thermal boundary
layer characterized by the vertical isotherms occupies a relatively smaller area than in
the cases in the medium range of Ra. The isotherms change from nearly vertical lines
in the near-shore region into bent lines in the middle region and finally into wavy lines
(representing uprising plumes) in the offshore region, confirming the scaling prediction
of three distinct subregions. Furthermore, a comparison between figures 9(a) and 9(b)
suggests that both the region with an indistinct thermal boundary layer and the region
with a stable thermal boundary layer shrink, whereas the unstable region expands,
as the Rayleigh number increases; this is consistent with the scaling prediction.

Streamlines at steady state obtained for Ra = 1.4 × 106 and Ra = 1.4 × 107 are
shown in figures 9(c) and 9(d), respectively. Comparison suggests that the intensity,
the wave number and the extent of instability all increase with Ra.

The horizontal heat transfer rates averaged over the local water depth are shown in
figures 9(e) and 9(f ). These plots provide a quantitative measurement of the dividing
positions for different subregions. The position where conduction equals convection
separates the conduction-dominated region from the convection-dominated region.
The dependence of this dividing position on the Rayleigh number has been shown in
figure 8. The position where convection starts to show wavy features divides the region
dominated by stable convection from the region dominated by unstable convection.

To estimate the position where the instability starts to occur, time series of the
horizontal convection at various horizontal positions are obtained, and standard
deviations are calculated over a dimensionless time period of 0.04 during the quasi-
steady state. In a stable steady flow, the standard deviation is zero; when instability
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Figure 9. Features of thermal flow in the high Ra regime (Ra> Ra3
cA

4eηh) at the quasi-steady
state. (a) Isotherms with an interval of 0.063 at Ra =1.4 × 106, (b) isotherms with an interval
of 0.042 at Ra = 1.4 × 107. The lower plots in (a) and (b) are enlarged views of the sections
indicated by the dashed lines. (c) Streamlines with an interval of 7 at Ra = 1.4 × 106. (d)
Streamlines with an interval of 14 at Ra = 1.4 × 107. Dashed streamlines represent clockwise
flow, and solid streamlines represent anticlockwise flow. (e) and (f ) are the profiles of
the horizontal heat transfer rates averaged over local water depth for Ra= 1.4 × 106 and
Ra= 1.4 × 107, respectively.

occurs, the standard deviation will increase. The calculated standard deviation is then
plotted against the horizontal position x in figure 10(a) for a range of Rayleigh
numbers. It is clear in figure 10(a) that the position where the standard deviation
starts to increase moves toward the shore as the Rayleigh number increases. The
positions where the standard deviation first exceeds a certain threshold (0.001) were
obtained for different Rayleigh numbers. These positions approximately represent
the boundary between the stable and unstable subregions, and are plotted against
the scaling predictions (by solving x2 numerically from f2(x2) ∼ Ra) in figure 10(b).
It is clear from figure 10(b) that the unstable region expands toward the shore as
Ra increases. The good linear correlation shown in figure 10(b) confirms the scaling
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Figure 10. (a) Standard deviation of convection time series over a time period of 0.04 at
the quasi-steady state. (b) Dividing position between the stable and unstable regions from
numerical simulations versus the prediction from scaling.

prediction with regard to the dividing position between the stable and unstable
regions.

The time series of the calculated horizontal heat transfer rate averaged over the
local water depth for Ra =1.4 × 106 are shown in figure 11 for three representative
horizontal positions, each dominated by a distinct heat transfer mode at quasi-
steady state: conduction; stable convection; and unstable convection. In the region
dominated by conduction (figure 11a), conduction dominates the horizontal heat
transfer over the entire time series. In the region dominated by stable convection
(figure 11b), convection gradually surpasses conduction and becomes the dominant
mode of the horizontal heat transfer as time goes on. In the region dominated by
unstable convection (figure 11c), instability sets in after a certain time, and both
conduction and convection become unstable with unstable convection dominating
the horizontal heat transfer. At the quasi-steady state, a spectral analysis of the
time series indicates that the frequencies of the fluctuations of both conduction and
convection remain approximately constant.

6.2. Initial stage scaling

At the initial stage, the exponentially decaying absorption of radiation with the water
depth results in the dependency of the water temperature on the horizontal position x.
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Figure 11. Time series of the horizontal heat transfer rates averaged over the local water
depth at Ra = 1.4 × 106 for three representative x positions (a) x = 0.5, (b) x = 1.5, (c) x = 4.

Here, both the time dependency and the x dependency of the initial temperature scale
(9) are validated against numerical data in figures 12 and 13.

To validate the dependency of the temperature on time, the x position is fixed at
x = 5 and the temperature profiles are extracted along the line normal to the bottom
surface at different times (figure 12a). It is clear that T decreases away from the
bottom boundary and becomes constant after a short distance, indicating the thermal
boundary layer is only confined to a thin layer near the bottom surface at the initial
stage. The position where T starts to become constant marks the outer edge of the
thermal boundary layer, and thus it is clear from figure 12(a) that the thickness
of the thermal boundary layer grows with time. After normalizing the distance and
temperature by (8) and (9), respectively, the temperature profiles along the vertical



Unsteady natural convection in a triangular enclosure 95

t = 4.0 × 10–4

4.8 × 10–4

5.6 × 10–4

6.4 × 10–4

7.2 × 10–4

8.0 × 10–4

(a)

(b)

0.03

0.02

T
0.01

1.2

1.0

0.8

0.6

0.4

0.2

0

–0.2
0 2 4 6

Normalized distance above the bottom surface

8 10 12

0

0 0.05

Distance above the bottom surface

0.10 0.15

T
Tb

Figure 12. Verification of initial temperature scaling with respect to time at x = 5.0 (a)
Temperature profiles normal to the bottom surface at different times. (b) Normalized
temperature profiles.

line at different times collapse onto a single line (figure 12b), and thus the time
dependency of δT and Tb specified in (8) and (9) is verified.

To validate the x dependency of Tb, temperature profiles along lines normal to
the bottom surface at different x and at a fixed time t = 8.0 × 10−4 are shown in
figure 13(a), and the normalized temperature profiles using the scales (8) and (9) are
plotted in figure 13(b). The collapse of the temperature profiles at different x onto
a single line in figure 13(b) clearly verifies the x dependency of the temperature, as
specified in (9).

6.3. Steady-state scaling for distinct regions

Selected properties at the steady state are verified in this section. Since the present
scaling analysis reveals the dependency of flow properties on the horizontal position
x, emphasis will be placed on this x dependency in the following validation.

Two different sets of scaling for the steady-state boundary layer have been derived
in § 3.2: scales (20) and (23)–(26) apply to an indistinct thermal boundary layer near
shore which is dominated by conduction; scales (15)–(19) apply to a distinct thermal
boundary layer dominated by stable convection. Through mass conservation, it can
be derived that the velocity scale for the thermal boundary layer applies to the upper
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Figure 13. Verification of initial temperature scaling with respect to the horizontal position x
at time t = 8.0 × 10−4. (a) Non-dimensional temperature profiles normal to the bottom surface
at different non-dimensional x. (b) Normalized temperature profiles at different horizontal
positions.

intrusion layer as well (Lei & Patterson 2002). The scales of the flow velocity and the
volumetric flow rate of both sets of scaling are considered here. The volumetric flow
rate characterizes the strength of the circulation, and is calculated numerically as:

Q(x) = 1/2

∫ 0

−Ax

|u| dy. (39)

6.3.1. Conduction-dominated region

For the conduction-dominated region, the flow velocity in the boundary layer is
governed by (25). The calculated maximum velocities in both the boundary and
intrusion layers at a number of horizontal locations within the conduction-dominated
region are plotted against the dimensionless velocity scale in figure 14. It is clear
that the maximum velocities in both the bottom and upper layers are represented
well by the velocity scale (25). In particular, the dependency of the velocity on the
horizontal position x revealed by the present scaling is verified. Another feature
revealed in figure 14 is that the slope of the linear fit line is larger for the upper
layer than that for the bottom layer (1.45 for the upper layer and 0.98 for the
bottom layer), indicating stronger flow in the upper layer. This is a consequence
of different boundary conditions (stress-free at the surface and non-slip at the
bottom).
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�, 5600 (0.9 ∼ 1.8); �, 7000 (0.9 ∼ 1.8); +, 21 000 (0.9 ∼ 1.2); �, 35 000 (0.9 ∼ 1.2); −, linear fit.

Ra = 3500 (x = 0.9~2.1)
5600 (x = 0.9~1.8)
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Figure 15. Volumetric flow rate at different x positions within the conduction-dominated
near-shore region for different Rayleigh numbers. The x positions are equally spaced within
the specified range.

The calculated volumetric flow rates within the conduction-dominated region are
plotted against the non-dimensional form of scale (26) in figure 15. It is clear that the
volumetric flow rate is represented well by the scaling.

6.3.2. Regions dominated by stable convection

For the convection-dominated region with a distinct and stable thermal boundary
layer, the velocity scale (18) applies at the steady state. From (18), for shallow
waters where x < (Aη)−1, the velocity increases with the horizontal position x. The
calculated maximum velocities along vertical lines at different x positions within the
stable convection region are plotted against the dimensionless form of (18) for both
the bottom boundary layer and the upper layer in figure 16. The numerical results
shown in figures 16(a) and 16(b) are obtained for a wide range of Rayleigh numbers,
spanning both the stable and unstable flow scenarios. For clarity, only data at one x

position are shown for each Ra within the stable regime in figures 16(a) and 16(b).
The dependency of the velocity on x within the stable regime is further illustrated in
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Figure 16. Maximum velocity extracted along vertical lines at various x positions within the
stable convection region. The x positions are equally spaced within the specified range. (a) and
(c) are maximum negative horizontal component of velocity in the bottom boundary layer. (b)
and (d) are maximum horizontal component of velocity in the upper layer. −, linear fit.

figures 16(c) and 16(d). As noted before, the selected positions are located sufficiently
far from the endwall to avoid the endwall effect.

Figure 16 demonstrates that (18) is an appropriate velocity scale for the
region dominated by stable convection in both the medium Ra regime of
A−2eηh <Ra < Ra3

cA
4eηh and the high Ra regime of Ra > Ra3

cA
4eηh.

The numerically calculated volumetric flow rates in the medium Ra regime are
plotted against the scaling prediction (19) in figure 17. The linear correlation clearly
confirms that the volumetric flow rate is represented well by the scaling results.

6.4. Critical time for the onset of instability

The scaling result (29) given in § 3.3 suggests that the critical time for the onset of
instability increases with the horizontal position x. The dependency of the critical
time tB on Ra specified in (29) has been verified in Lei & Patterson (2002). Therefore,
the verification here is only concerned with the x dependency of the critical time tB .

The critical time for the onset of instability has been determined through a direct
stability analysis based on a three-dimensional model in Lei & Patterson (2003). In
their numerical model, both random and single-mode perturbations are introduced
over the sloping bottom, and the standard deviations of the temperature along the
transverse direction at different x positions are recorded as time series. In principle,
the critical time for the onset of instability corresponds to the time when the standard
deviation starts to increase from an initially constant value. With the single-mode
perturbation in place, the plot of the critical time for the onset of instability against the
horizontal position x in Lei & Patterson (2003) shows that, apart from the tip region
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Figure 17. Volumetric flow rate at different x positions within the stable convection region
under different Rayleigh numbers. The x positions are equally spaced within the specified
range.
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Figure 18. Critical time of instability at different horizontal positions from the numerical
simulation of Lei & Patterson (2003) versus the present scaling prediction.

and the deep end region which are affected by the endwall, the critical time increases
monotonically with the horizontal position x, which is in qualitative agreement with
the present scaling analysis.

The critical time tB obtained at different x positions from the direct stability analysis
of Lei & Patterson (2003) is plotted against the present scaling prediction in figure 18.
In order to avoid the effect of the two endwalls, the x positions are chosen between
3.56 and 7.44 at equal intervals. Here, the critical Rayleigh number Rac in (29) is
calculated from (28). Although the exact value of Rac relevant to the present flow
configuration remains unresolved, according to (29), it will only slightly affect the
slope of the linear fitting line in figure 18 and will not change the linear correlation
between the numerical data and the scaling prediction as long as Rac is a constant.
Figure 18 suggests that the x dependency of the critical time predicted by the present
scaling analysis is verified well by the reported results of the direct stability analysis.
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Meanwhile, the present scaling presents a theoretical explanation for the increase of
the critical time with the offshore distance x observed by Lei & Patterson (2003).

7. Conclusions
By recognizing the dependence of various flow quantities on the horizontal position

with a variable length scale x and retaining the exponential term e−Aηxarising from
the non-uniform heat flux at the sloping bottom in the analysis, the present scaling
reveals detailed features of natural convection induced by absorption of radiation
in a triangular domain which are not shown in the previous scaling: the entire flow
domain is separated into different subregions with distinct flow and thermal features.
Furthermore, the present scaling also quantifies the variation of the flow properties
with the horizontal position x in different regions. These newly predicted features are
verified by numerical simulations.

Two critical functions for the Rayleigh number have been derived to characterize
the flow features: f1(x) ∼ A−6(h/x)4eAηx and f2(x) ∼ Ra3

c(h/x)4eAηx . The thermal
boundary layer is distinct if Ra >f1(x) and unstable if Ra >f2(x). There are four
possible flow scenarios depending on the bottom slope A and the maximum water
depth h.

The flow scenario with A>Ra−1/2
c and h < 4/η can be further classified into three

different flow regimes according to the Rayleigh number, which are examined in detail
in this study. The major features in each of the flow regimes are summarized below
with respect to the dominant mode of horizontal heat transfer at steady state:

(i) Ra < A−2eηh. The entire domain is dominated by stable conduction.
(ii) A−2eηh <Ra <Ra3

cA
4eηh. The domain is composed of two distinct subregions

(separated at offshore distance x0 where f1(x0) ∼ Ra): a near-shore region dominated
by conduction and an offshore region dominated by stable convection.

(iii) Ra >Ra3
cA

4eηh. The domain consists of three distinct subregions (separated at
offshore distance x1 and x2 where f1(x1) ∼ Ra, f2(x2) ∼ Ra): a near-shore region
dominated by conduction, a central region dominated by stable convection, and an
offshore region dominated by unstable convection.

Apart from identifying distinctive regions within the triangular flow domain, the
present scaling also reveals the variation of flow and thermal features with the
horizontal position x within distinct flow regions. Two sets of steady-state scales are
derived for the conduction-dominated region (scale (20) and (23)–(26)) and the region
dominated by stable convection (scale (15)–(19)), both embodying the horizontal
position dependence. A time scale for the onset of instability in the unstable flow
regime, which also depends on the horizontal position, is given in (29).

In a real-life situation, the intensity of solar radiation usually places the flow in
regime (iii) above. Hence, instability induced by the absorption of radiation is present
in a region offshore, the extent of which can be estimated from the present scaling
analysis. Furthermore, the present scaling results are readily applicable to designing
laboratory or geophysical experiments, since they provide detailed estimation of the
magnitude of the temperature, the velocity, the steady-state time, and the time for the
onset of instability at different horizontal positions, as well as the features and scopes
of distinctive subregions for various flow scenarios.

In application of the scaling to field situations, many other geophysical factors must
be accounted for, such as the unsteadiness of the flow due to the diurnal variation of
the thermal forcing suggested by field experiments (Adams & Wells 1984; Monismith
et al. 1990) and asymptotic solutions (Farrow 2004), the effect of the rotation of the
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earth at large scales, the complex three-dimensional topography for which the two-
dimensional model is not appropriate, and the interaction of the thermal flow with
currents driven by other mechanisms (e.g. tides, wind-driven currents, waves, etc). In
addition, the present scaling of velocity as a function of the offshore distance applies
only to the regions dominated by conduction or stable convection. For unstable
regions, the magnitude of the flow is significantly modulated by flow instabilities
in the form of thermal plumes. Despite the simplification of the present model, the
different flow scenarios and the variation of radiation-induced thermal flow with the
offshore distance revealed by the present improved scaling analysis have significant
implications for a comprehensive near-shore model.

The improved scaling analysis presented in this paper is concerned with constant
thermal forcing induced by absorption of radiation. A similar scaling analysis can be
carried out for boundary-layer flow in the wedge domain subject to constant heat loss
from the water surface. The advancement in scaling for the constant thermal forcing
in the wedge domain will also benefit a more realistic thermal forcing model of the
diurnal heating and cooling cycle. Furthermore, the adoption of a varying length scale
embodied in the present scaling can be applied to a wider range of similar problems.
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China Scholarship Council and James Cook University.

REFERENCES

Adams, E. E. & Wells, S. A. 1984 Field measurements on side arms of lake. J. Hydraul. Engng.
ASLE110, 773–793.

Bejan, A., Al-Homoud, A. A. & Imberger, J. 1981 Experimental study of high-Rayleigh-number
natural convection in a horizontal cavity with different end temperatures. J. Fluid Mech. 109,
283–299.

Bejan, A. & Rossie, A. N. 1981 Natural convection in a horizontal duct connecting two fluid
reservoirs. J. Fluid Mech. 109, 283–299.

Coates, M. J. & Patterson, J. C. 1993 Unsteady natural convection in a cavity with non-uniform
absorption of radiation. J. Fluid Mech. 256, 133–161.

Coates, M. J. & Patterson, J. C. 1994 Numerical simulations of the natural convection in a cavity
with nonuniform internal sources. Intl J. Heat Fluid Flow 15, 218–225.

Cormack, D. E., Leal, L. G. & Imberger, J. 1974a Natural convection in a shallow cavity with
differentially heated endwalls. Part 1. Asymptotic theory. J. Fluid Mech. 65, 209–229.

Cormack, D. E., Leal, L. G. & Seinfeld, J. H. 1974b Natural convection in a shallow cavity with
differentially heated endwalls. Part 2. Numerical solutions. J. Fluid Mech. 65, 231–246.

Drazin, P. G. & Reid, W. H. 1981 Hydrodynamic Stability. Cambridge University Press.

Farrow, D. E. 2004 Periodically forced natural convection over slowly varying topography. J. Fluid
Mech. 508, 1–21.

Farrow, D. E. & Patterson, J. C. 1993a On the response of a reservoir sidearm to diurnal heating
and cooling. J. Fluid Mech. 246, 143–161.

Farrow, D. E. & Patterson, J. C. 1993b On the stability of the near shore waters of a lake when
subject to solar heating. Intl J. Heat Mass Transfer 36, 89–100.

Farrow, D. E. & Patterson, J. C. 1994 The daytime circulation and temperature structure in a
reservoir sidearm. Intl J. Heat Mass Transfer 37, 1957–1968.

Hart, J. E. 1972 Stability of thin non-rotating Hadley circulations. J. Atmos. Sci. 29, 687–697.

Imberger, J. 1974 Natural convection in a shallow cavity with differentially heated endwalls. Part 3.
Experimental results. J. Fluid Mech. 65, 247–260.

Kurzweg, U. H. 1970 Stability of natural convection within an inclined channel. Trans. ASME C:
J. Heat Transfer 92, 190–191.



102 Y. Mao, C. Lei and J. C. Patterson

Lei, C. & Patterson, J. C. 2002 Unsteady natural convection in a triangular enclosure induced by
absorption of radiation. J. Fluid Mech. 460, 181–209.

Lei, C. & Patterson, J. C. 2003 A direct stability analysis of a radiation-induced natural convection
boundary layer in a shallow wedge. J. Fluid Mech. 480, 161–184.

Lei, C. & Patterson, J. C. 2005 Unsteady natural convection in a triangular enclosure induced by
surface cooling. Intl J. Heat Fluid Flow 26, 307–321.

Mao, Y., Lei, C. & Patterson, J. C. 2007 Natural convection in a triangular enclosure induced
by solar radiation. Proc. 16th Australasia Fluid Mechanics Conf. Gold Coast, Australia, 3–7
December 2007, pp. 406–410.

Monismith, S. G., Imberger, J. & Morison, M. L. 1990 Convective motions in the sidearm of a
small reservoir. Limnol. Oceanogr. 35, 1676–1702.

Monismith, S. G., Genin, A. Reidenbach, M. A., Yahel, G., & Koseff, J. R. 2006 Thermally driven
exchanges between a coral reef and the adjoining ocean. J. Phys. Oceanogr. 36, 1332–1347.

Ostrach, S. 1988 Natural convection in enclosures. Trans. ASME C: J. Heat Transfer 110, 1175–
1190.

Patterson, J. C. 1984 Unsteady natural convection in a cavity with internal heating and cooling,
J. Fluid Mech. 140, 135–151.

Patterson, J. C. & Imberger, J. 1980 Unsteady natural convection in a rectangular cavity. J. Fluid
Mech. 100, 65–86.

Rabl, A. & Nielsen, C. E. 1975 Solar ponds for space heating. Solar Energy 17, 1–12.

Trevisan, O. V. & Bejan, A. 1986 Convection driven by the nonuniform absorption of thermal
radiation at the free surface of stagnant pool. Numer. Heat Transfer 10, 483–506.


